В трапеции abcd bc параллельно ad. mn средняя линия трапеции, ad 3см, bc 5 Тогда длина отрезка MN - ?

KarinaKOSMOS KarinaKOSMOS    1   21.12.2021 00:08    61

Ответы
dmitrii1205 dmitrii1205  26.12.2023 05:44
Добрый день! Я буду рад выступить в роли школьного учителя и помочь вам решить эту задачу.

Для начала давайте взглянем на рисунок трапеции abcd:

a_______b
/ \
/ \
/ \
d____________c

Так как mn является средней линией трапеции, она соединяет середины боковых сторон (ad и bc). Пусть точка e - середина стороны ad, а точка f - середина стороны bc. Тогда мы можем обозначить точки mn, e и f на рисунке:

a_______b
/ \
/ f \
/ \
d_____e_____c

Дано, что ad = 3 см и bc = 5 см. Мы хотим найти длину отрезка MN. Для начала нам нужно найти длины отрезков ae и bf.

Так как e - середина стороны ad, то ae будет равно половине длины ad:

ae = ad / 2 = 3 см / 2 = 1.5 см

Таким же образом, bf будет равно половине длины bc:

bf = bc / 2 = 5 см / 2 = 2.5 см

Теперь у нас есть значения ae = 1.5 см и bf = 2.5 см.

Так как mn является средней линией трапеции, то она равна полусумме длин оснований трапеции, то есть (ad + bc) / 2.

mn = (ad + bc) / 2 = (3 см + 5 см) / 2 = 8 см / 2 = 4 см

Итак, длина отрезка MN равна 4 см.

Я надеюсь, что мое объяснение было понятным и помогло вам понять решение данной задачи. Если у вас есть еще вопросы, пожалуйста, не стесняйтесь задавать их!
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия