В равнобедренном треугольнике ABC с основанием BC проведена медиана AM. Из точки M на сторону AC опущен перпендикуляр MH (H ∈ AC). Известно, что AM:MC=2:1 и площадь треугольника MHC равна 6. Найдите площадь треугольника мне

Vika0095 Vika0095    3   30.04.2020 16:09    11

Ответы
CassyBelka CassyBelka  30.04.2020 16:30

ответ:Решение: В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой, и делит его на 2 равные части, одна из которых - треугольник АВМ. Следовательно АМ равно разности периметра треугольника АВМ и половины периметра треугольника АВС, а именно:

АМ=61,8-100/2=61,8-50=11,8 (см). Ведь, сумма сторон АВ и ВМ треугольника АВМ и есть половина периметра треугольника АВС. Остаётся одна - третья сторона АМ. Вот, её и нашли, как разность, описанную выше.

ответ: Медиана АМ = 11,8 см оцени Объяснение:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия