В правильной треугольной пирамиде SABC через ее высоту SO и боковое ребро SB проведена плоскость. Площадь образованного сечения в 4 раза меньше площади полной поверхности пирамиды. Найдите величину двугранного угла при основании пирамиды.

ketrin0309 ketrin0309    2   28.11.2021 21:17    0

Ответы
Anna13701 Anna13701  28.11.2021 22:00

Пирамида правильная, значит АВ=ВС=АС=4 и AS=BS=CS=6.

Из точек А и В проведем перпендикуляры к ребру SC. Получившийся треугольник АВН является искомым сечением, так как плоскость АВН перпендикулярна ребру SC.

Найдем площадь этого треугольника.

Треугольник АSС равнобедренный со сторонами АS=CS=6 и основанием АС=4. Высоту этого треугольника АН можно найти по Пифагору из прямоугольных треугольников ASH и ACH.

АН²=AS²-HS²(1) и АН²=AС²-CH², или АН²=AС²-(SC-HS)² (2).

Подставим известные значения и приравняем оба выражения.

36-HS² = 16-(6-HS)². Отсюда НS=14/3, a АН²= 36-196/9 = 128/9.

Найдем высоту треугольника АВН. По Пифагору

НК = √(АН²-АК²) = √(128/9-4) = √(92/9).

Тогда площадь сечения равна (1/2)*АВ*НК = 2*√(92/9) = (4/3)*√23.

2-й вариант решения:

Мы видим, что плоскость сечения делит пирамиду на две: SАВН и CАВН, у первой из которых высота SН, а у второй - СН (так как SС перпендикулярна плоскости АВН).

Объем данной нам пирамиды равен сумме объемов двух пирамид (SАВН и САВН). По формуле объема пирамиды имеем:

(1/3)*Sabh*SН + (1/3)*Sabh*СН = Vsabc.

То есть VsаЬс=(1/3)*Sabh*(SН+НС) =(1/З)SаЬh*6 = 2SаЬh.

Объем данной нам пирамиды равен (1/3)*SаЬс*SО, где SО - высота пирамиды. Площадь основания (площадь равностороннего треугольника) равна (√3/4)*а². В нашем случае Sа6с= 4√3. Найдем SО. В правильном треугольнике высота равна h= (√3/2)*а и делится точкой О(центром треугольника) в отношении 2:1 считая от вершины. В нашем случае

ОС= (2/3)*(√3/2)*4=4√3/3.

Тогда по Пифагору SO=√(36-16/3)=√92/√3 = 2√23/√3.

Следовательно, Vsabc = (1/3)*Sа6с*SО = (8/3)*√23.

Но Vsabc=2SаЬh, отсюда

SаЬh (4/3)*√23.

ответ: площадь сечения равна (4/3)*√23.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия