В! биссектриса прямого угла делит гипотенузу прямоугольного треугольника на отрезки, разность которых равна 5. найти площадь треугольника, если его катеты относятся как 3: 4.

dmitriy1978 dmitriy1978    3   09.03.2019 06:40    2

Ответы
Sheria777 Sheria777  24.05.2020 09:53

ну, по свойству биссектрисы отрезки гипотенузы тоже относятся как 3/4. Пусть один из них 3*x, тогда 4*x, разность x = 5. Поэтому гипотенуза равна 7*5 = 35. 

Катеты легко находятся из теоремы Пифагора при заданной пропорции, они равны 21 и 28. А площадь равна 294.

Задачу можно решить без каких-то "сложных" вычислений, если сразу увидеть, что отношение катетов 3/4 задает нам египетский треугольник, подобный (3,4,5). Сопоставляя эту тройку с длиной гипотенузы 35, видим, что длины сторон (21, 28, 35). 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия