Усі плоскі кути при вершині тетраедра – прямі. Знайдіть площу бічної поверхні тетраедра, якщо його бічні ребра дорівнюють 4 см, 5 см і 6 см.

crasnowdim2018 crasnowdim2018    3   31.05.2023 04:06    0

Ответы
Annkot22 Annkot22  31.05.2023 06:00

9.589 см²

Объяснение:

Для розв'язання цієї задачі використаємо формулу для обчислення площі бічної поверхні тетраедра. Площа бічної поверхні тетраедра може бути обчислена за до формули Герона, яка базується на довжинах його бічних ребер.

Спочатку виміряємо довжину трьох бічних ребер тетраедра, які в даному випадку дорівнюють 4 см, 5 см і 6 см.

Застосуємо формулу Герона для обчислення площі бічної поверхні тетраедра:

Площа = √[s(s-a)(s-b)(s-c)],

де s - півпериметр трикутника, a, b, c - довжини сторін трикутника.

Спочатку знайдемо півпериметр (s) трикутника, використовуючи довжини бічних ребер:

s = (a + b + c) / 2

s = (4 + 5 + 6) / 2 = 15 / 2 = 7.5

Підставимо значення s, a, b, c в формулу для обчислення площі:

Площа = √[7.5(7.5-4)(7.5-5)(7.5-6)]

Площа = √[7.5(3.5)(2.5)(1.5)]

Площа ≈ √[91.875]

Площа ≈ 9.589 см²

Отже, площа бічної поверхні тетраедра становить приблизно 9.589 см².

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия