В трапецию можно вписать окружность, только если суииа боковых сторон равна сумме оснований. В нашем случае 8см+18см=26см. Значит боковая сторона нашей трапеции равна 13см. Высота трапеции равна диаметру вписанной окружности. Опустим перпендикуляр из верхнего угла на большее основание. Тогда имеем прямоугольный тр-к, образованный боковой стороной, высотой и отрезком большего основания, равным (18-8)/2 = 5. По Пифагору высота у нас равна: √(13²-5²) =√144= 12см. Итак, радиус вписанной окружности = 6.
Опустим перпендикуляр из верхнего угла на большее основание. Тогда имеем прямоугольный тр-к, образованный боковой стороной, высотой и отрезком большего основания, равным (18-8)/2 = 5. По Пифагору высота у нас равна:
√(13²-5²) =√144= 12см. Итак, радиус вписанной окружности = 6.