У трикутнику ABC кут C=40 градусів, кут A=80 градусів. Знайдіть кут між висотою AH і бісектрисою AK

kksa2001 kksa2001    2   03.08.2022 07:55    0

Ответы
NikoYuqa1 NikoYuqa1  03.08.2022 07:56

10^\circ

Объяснение:

Угол B треугольника равен

180^\circ - 40^\circ - 80^\circ = 60^\circ ,

тогда в прямоугольном треугольнике ABH

\angle BAH = 90^\circ - \angle B = 90^\circ - 60^\circ = 30^\circ .

Но \angle BAK = \displaystyle\frac{1}{2}\angle A = \displaystyle\frac{{80^\circ }}{2} = 40^\circ .

Значит

\angle HAK = \angle BAK - \angle BAH = 40^\circ - 30^\circ = 10^\circ .


У трикутнику ABC кут C=40 градусів, кут A=80 градусів. Знайдіть кут між висотою AH і бісектрисою AK
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия