У прямокутній трапеції точка дотику вписаного у неї кола ділить більшу основу на відрізки 12 і 16 починаючи від вершини прямого кута знайдіть меншу основу трапеції.
В чотрикутник можно вписати коло тільки тоді, коли суми протилежних сторін рівні: АД+ВС=АВ+СД.
З властивості дотичних до кола , проведених з однієї точки маємо:
АЕ=АМ , ∠А=90° та ОМ ⊥ АВ , так як ОМ- то є радіус кола. Отже АМОЕ- квадрат зі стороною 12 . Аналогічно ВМ =ВК , ∠В=90° ,ОК ⊥ ВС . Отже МВКО - квадрат зі стороною 12. АВ=АМ+МВ=12+12= 24.
КС=FC, ED=DF( як дотичні)
ΔСОД- прямокутний ( там довгенько доводити на основі подібності трикутників и знання , що ОД і ОС- бісектріси ) та ОF- висота прямокутного трикутника, проведена до бісектриси. По леммі про висоту прямкутного трикутника : ОF²= CF*FD
Відповідь:
21
Пояснення:
Відповідь:
Пояснення:
дано: АВСД- прямокутна трапеція, АЕ=12 , ЕД=16 см
Знайти: ВС-?
Рішення:
В чотрикутник можно вписати коло тільки тоді, коли суми протилежних сторін рівні: АД+ВС=АВ+СД.
З властивості дотичних до кола , проведених з однієї точки маємо:
АЕ=АМ , ∠А=90° та ОМ ⊥ АВ , так як ОМ- то є радіус кола. Отже АМОЕ- квадрат зі стороною 12 . Аналогічно ВМ =ВК , ∠В=90° ,ОК ⊥ ВС . Отже МВКО - квадрат зі стороною 12. АВ=АМ+МВ=12+12= 24.
КС=FC, ED=DF( як дотичні)
ΔСОД- прямокутний ( там довгенько доводити на основі подібності трикутників и знання , що ОД і ОС- бісектріси ) та ОF- висота прямокутного трикутника, проведена до бісектриси. По леммі про висоту прямкутного трикутника : ОF²= CF*FD
12²=CF*16
CF=144:16=9
BC=BK+KC=12+9=21