Три РАВНЫХ по площади круга могут касаться друг друга только внешним образом. Окружность, которая ВНУТРЕННИМ образом касается трех указанных - это окружность, являющаяся ВНЕШНЕЙ для трех остальных. Рассмотрим треугольник АВС. Это равносторонний треугольник со стороной, равной 2r. Высота этого треугольника h равна r√3. Тогда отрезок ОА=(2/3)*r√3, а радиус искомой окружности равен ОА+r или R=(2/3)*r(√3+1)= r(2√3+3)/3. Так как r=√(S/π), то R=r((2/3)*(√3+1)) или R=√(S/π)*((2√3+3)/3). R²=(S/π)*((2√3+3)/3)² или R²=(S/π)*(12+12√3+9)/9=(S/π)*((7+4√3)/3). Площадь искомого круга будет Sи=πR². Тогда Sи=S*(7+4√3)/3.
Рассмотрим равностор треуг образованный центрами этих кругов. его сторона равна двум радиусам кругов(2r). его медианы пересекаются и делятся как 1/2 найдём мед , пусть её длина x по т пиф x^2=(2r)^2- r^2 x^2=4r^2-r^2 x^2=3r^2 x=r корней из 3 найдём радиус маленького круга r=2/3x+r=2/3rкорней из 3 +r= 2r/3корней из 3 +r найдём площ этого круга s=пи(2r/3корней из 3 +r)^2=пи r^2(2+3корней из 3)/3корней из 3)^2 найдём r через s тк s=пи r^2, то r^2=(s/пи) s=s(7-4корней из 3)/3 ответ: s(7-4 корней из 3)/3
Рассмотрим треугольник АВС. Это равносторонний треугольник со стороной, равной 2r. Высота этого треугольника h равна r√3.
Тогда отрезок ОА=(2/3)*r√3, а радиус искомой окружности равен ОА+r или
R=(2/3)*r(√3+1)= r(2√3+3)/3.
Так как r=√(S/π), то R=r((2/3)*(√3+1)) или R=√(S/π)*((2√3+3)/3).
R²=(S/π)*((2√3+3)/3)² или R²=(S/π)*(12+12√3+9)/9=(S/π)*((7+4√3)/3).
Площадь искомого круга будет Sи=πR².
Тогда Sи=S*(7+4√3)/3.
найдём мед , пусть её длина x
по т пиф x^2=(2r)^2- r^2
x^2=4r^2-r^2
x^2=3r^2
x=r корней из 3
найдём радиус маленького круга
r=2/3x+r=2/3rкорней из 3 +r= 2r/3корней из 3 +r
найдём площ этого круга
s=пи(2r/3корней из 3 +r)^2=пи r^2(2+3корней из 3)/3корней из 3)^2
найдём r через s
тк s=пи r^2,
то r^2=(s/пи)
s=s(7-4корней из 3)/3
ответ: s(7-4 корней из 3)/3