Треугольник авс-равнобедренный с основанием ас, отрезок bd-его медиана, о-точка на медиане. на стороне ав взята точка к, на стороне вс-точка м, причем вк=вм. докажите, что окв и омв равны.

ckudryasheva ckudryasheva    1   18.08.2019 02:50    6

Ответы
Nomatdicov Nomatdicov  14.08.2020 15:48
Т.к. АВС равнобедренный BD-биссектриса
КВО=МВО (биссектриса)
ОВ-общая сторона
КВ=ВМ (по условию)
из этих трех утверждений следует равенство треугольников ОКВ и ОМВ
ПОКАЗАТЬ ОТВЕТЫ
wagnercop06s12 wagnercop06s12  14.08.2020 15:48
Рассмотрим треугольники ОКВ и ОМВ: угол КВО = углу ОВМ(т.к. ВD это медиана и биссекириса пр признакам равнобедренного треугольника); BK=BM(по условию);BO-общая;значит треугольник OKB = треугольнику OMB по первому признаку равенства треугольников.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия