Треугольник авс образован осями координат и прямой 6х+5у-30=0. найти длину высоты, опущенной из вершины прямого угла на противоположную сторону. составить уравнение этой высоты. сделать чертёж.
6х+5у-30=0 5y = -6x + 30 у = -6/5x + 6 перпендикуляр, проведённый к этой прямой из начала координат будет иметь обратный угловой коэффициент k₂ = -1/k₁ = -1/(-6/5) = 5/6 И эта прямая проходит через точку (0;0), т.е. в уравнении прямой y=ax+b b должно быть равно 0 Уравнение перпендикуляра y = 5/6x Точку пересечения найдём из совместного решения систему двух уравнений у = -6/5x + 6 y = 5/6x 5/6x = -6/5x + 6 (5/6+6/5)x = 6 (25+36)x = 6*30 x = 180/61, y = 5/6x = 150/61 И расстояние от начала координат √((180/61)²+(150/61)²) = 30/√61
5y = -6x + 30
у = -6/5x + 6
перпендикуляр, проведённый к этой прямой из начала координат будет иметь обратный угловой коэффициент
k₂ = -1/k₁ = -1/(-6/5) = 5/6
И эта прямая проходит через точку (0;0), т.е. в уравнении прямой y=ax+b b должно быть равно 0
Уравнение перпендикуляра
y = 5/6x
Точку пересечения найдём из совместного решения систему двух уравнений
у = -6/5x + 6
y = 5/6x
5/6x = -6/5x + 6
(5/6+6/5)x = 6
(25+36)x = 6*30
x = 180/61,
y = 5/6x = 150/61
И расстояние от начала координат
√((180/61)²+(150/61)²) = 30/√61