a) f(x)= 0.25·x²-2·x+2
b)f(x)=Mod(-x/4-1.75)
Объяснение:
a) f(2x+1)=x²-3x
2x+1=z => 2x=z-1 => x= (z-1)/2 ; x²=(z-1)²/4
=> f(z)= (z-1)²/4-3(z-1)/2 = (z²-2z+1)/4 - (6z-6)/4
=>f(z)= (z²-2z-6z+1+7)/4= (z²-8z+8)/4 = 0.25·z²-2·z+2
=> f(x)= 0.25·x²-2·x+2
b) f(1-4x)=Mod(x-2)
1-4x=z => 4x=1-z => x= (1-z)/4
=> f(z)= Mod(1/4-z/4-2) = Mod (-z/4 -1.75)
=>f(x)=Mod(-x/4-1.75)
a) f(x)= 0.25·x²-2·x+2
b)f(x)=Mod(-x/4-1.75)
Объяснение:
a) f(2x+1)=x²-3x
2x+1=z => 2x=z-1 => x= (z-1)/2 ; x²=(z-1)²/4
=> f(z)= (z-1)²/4-3(z-1)/2 = (z²-2z+1)/4 - (6z-6)/4
=>f(z)= (z²-2z-6z+1+7)/4= (z²-8z+8)/4 = 0.25·z²-2·z+2
=> f(x)= 0.25·x²-2·x+2
b) f(1-4x)=Mod(x-2)
1-4x=z => 4x=1-z => x= (1-z)/4
=> f(z)= Mod(1/4-z/4-2) = Mod (-z/4 -1.75)
=>f(x)=Mod(-x/4-1.75)