Не могут, докажем это. Допустим, что они пересекаются в точке О. Через точки К, О, Р можно по аксиоме провести плоскость и притом только одну. Пусть это плоскость alpha. По аксиоме: если две точки прямой лежат в плоскости, то и вся прямая лежит в этой плоскости. Для прямой КМ: K принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой KM, значит две точки прямой КМ принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой KM, в частности, точка M принадлежит alpha. Для прямой PT: P принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой PT, значит две точки прямой PT принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой PT, в частности, точка T принадлежит alpha. В итоге получили, что точки K,M,P,T принадлежат плоскости alpha, получаем противоречие с условием. Значит прямые KM и PT не пересекаются.
Не могут, докажем это.
Допустим, что они пересекаются в точке О.
Через точки К, О, Р можно по аксиоме провести плоскость и притом только одну. Пусть это плоскость alpha.
По аксиоме: если две точки прямой лежат в плоскости, то и вся прямая лежит в этой плоскости.
Для прямой КМ: K принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой KM, значит две точки прямой КМ принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой KM, в частности, точка M принадлежит alpha.
Для прямой PT: P принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой PT, значит две точки прямой PT принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой PT, в частности, точка T принадлежит alpha.
В итоге получили, что точки K,M,P,T принадлежат плоскости alpha, получаем противоречие с условием.
Значит прямые KM и PT не пересекаются.