Объяснение:
Дано:
Трапеция АВСD
прямая FG
Доказать что
Доказательство
АВСD - трапеция => ВС || АD
Тогда диагонали АС, ВD и прямую FG можно рассматривать как секущие при 2х параллельных.
Соответственно,
- будут равны углы (как накрест лежащие):
- будут равны как вертикальные:
Рассм. подобные ∆-ки.
Вследствие равенства углов подобны:
∆АОК и ∆СОМ
∆DОК и ∆BОМ.
Коэффициент подобия:
Oчевидно, что в обоих случаях коэффициент подобия можно выразить через одно и то же соотношение, а значит коэффициенты равны:
Что и требовалось доказать
Объяснение:
Дано:
Трапеция АВСD
прямая FG
Доказать что
Доказательство
АВСD - трапеция => ВС || АD
Тогда диагонали АС, ВD и прямую FG можно рассматривать как секущие при 2х параллельных.
Соответственно,
- будут равны углы (как накрест лежащие):
- будут равны как вертикальные:
Рассм. подобные ∆-ки.
Вследствие равенства углов подобны:
∆АОК и ∆СОМ
∆DОК и ∆BОМ.
Коэффициент подобия:
Oчевидно, что в обоих случаях коэффициент подобия можно выразить через одно и то же соотношение, а значит коэффициенты равны:
Что и требовалось доказать