Точка м равноудалена от вершин равностороннего треугольника абс, отрезок мн-перпендикуляр, проведённый из точки м к плоскости абс. найдите ма, если аб=6, мн=2.

Anna3367171 Anna3367171    1   28.09.2019 16:30    14

Ответы
TaHoC TaHoC  02.09.2020 08:25

Точка М равноудалена от вершин равностороннего треугольника АВС, значит она проецируется в центр треугольника АВС, так как проекции равных наклонных равны. Итак, точка Н - центр треугольника АВС.  В правильном треугольнике АВС высота АР является и медианой и биссектрисой угла А.  АР = (√3/2)*а - формула.  АР = 3√3. Высота АР правильного треугольника АВС делится центром Н в отношении 2:1, считая от вершины (свойство). Значит АН=АР*(2/3) = 2√3. По Пифагору из треугольника АМН имеем: АМ=√(АН²+МН²) = √(12+4) = 4.

ответ: АМ=4 ед.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия