отношение сторон 5:12:13 предполагает, что каждую из них можно разделить на какое-то количество равных отрезков (обозначь этот равный /единичный отрезок как хочешь
х,n, kну пусть как обычно х)
тогда стороны 5x , 12x , 13 x
по теореме Пифагора в прямоугольном треугольнике
c^2 =a^2+b^2
для наших сторон
(13x)^2 = (5x)^2 + (12x)^2
надо доказать, что это тождество СОБЛЮДАЕТСЯ
(13x)^2 = (5x)^2 + (12x)^2 < разделим обе части на x^2
отношение сторон 5:12:13 предполагает, что каждую из них можно разделить на какое-то количество равных отрезков (обозначь этот равный /единичный отрезок как хочешь
х,n, kну пусть как обычно х)
тогда стороны 5x , 12x , 13 x
по теореме Пифагора в прямоугольном треугольнике
c^2 =a^2+b^2
для наших сторон
(13x)^2 = (5x)^2 + (12x)^2
надо доказать, что это тождество СОБЛЮДАЕТСЯ
(13x)^2 = (5x)^2 + (12x)^2 < разделим обе части на x^2
13^2 = 5^2 +12^2
169 = 25 +144 = 169
ДОКАЗАНО прямоугольный треугольник