Стороны параллелограмма равны 12см и 8 см , а угол между высотами проведёнными из вершины тупого угла , равен 30*градусов.найдите площадь параллелограмма.

UlianaModerator UlianaModerator    3   28.05.2019 21:30    9

Ответы
Nice1111111111111 Nice1111111111111  26.06.2020 16:21
Пусть данный параллелограмм будет АВСД. 
Сделаем соразмерно условию рисунок и рассмотрим его.
ВН высота, ⊥ АД и⊥ ВС, 
ВМ - высота и ⊥АВ и ⊥ прямой СД. ⇒
Угол АВМ - прямой, угол АВН=90-60º, ⇒
угол ВАН=30º
ВН противолежит углу 30º, на этом основании рана половине АВ=4 см
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена. 
S АВСД=4*12=48 см²
Так как противоположные углы параллелограмма равны, точно так же высота к ВД ( она пересекает продолжение СД) равна 12:2=6 см, 
Ясно, что произведение высоты  ВМ и стороны СД = 6*8=48 см²
Стороны параллелограмма равны 12см и 8 см , а угол между высотами проведёнными из вершины тупого угл
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия