Стороны оснований правильной треугольной усеченной пирамиды равны 6 см и 12 см. угол между плоскостями боковой грани и основания равен 30°. найдите площадь боковой поверхности данной усеченной пирамиды.

Ришат12333323 Ришат12333323    2   31.07.2019 10:30    31

Ответы
lalalllaaaallllalala lalalllaaaallllalala  28.09.2020 14:42

Основания - правильные треугольники. О₁ - центр верхнего основания (точка пересечения медиан (биссектрис, высот)), О - центр нижнего основания.

Пусть Н - середина В₁С₁, тогда О₁Н - радиус окружности, вписанной в треугольник А₁В₁С₁.

  О₁Н = а√3/6 = 6√3/6 = √3 см

Пусть К - середина ВС, тогда ОК - радиус окружности, вписанной в треугольник АВС:

   ОК = 12√3/6 = 2√3 см.

ОО₁ - высота пирамиды, тогда

ОО₁⊥ВС и АК⊥ВС, т.е. ребро ВС перпендикулярно двум пересекающимся прямым плоскости АКН, значит

ВС⊥(АКН)

Тогда ВС⊥КН, ∠НКА = 30° и НК - апофема пирамиды.

Sбок = (P₁ + P₂) · HK, где P₁ и P₂ - периметры оснований.

Осталось найти НК.

ОО₁НК - прямоугольная трапеция. Проведем в ней высоту НТ.

ОО₁НТ - прямоугольник, ОТ = О₁Н = √3 см

ТК = ОК - ОТ = 2√3 - √3 = √3 см

ΔНТК:    cos 30° = TK / HK

               HK = TK / cos 30° = √3 / (√3/2) = 2 см

Sбок = (P₁ + P₂) · HK = (6 ·3 + 12 · 3) · 2 = (18 + 36) · 2 = 54 · 2 = 108 см²

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия