Сторони трикутника авс дорівнюють 10 см, 17 см і 21 см. з вершини найбільшого кута трикутника до його площини проведено перпендикуляр ад , який дорівнює 15 см. знайти відстань від точки д до сторони вс трикутника.

dapmoney2p0c8c0 dapmoney2p0c8c0    1   05.06.2019 14:00    10

Ответы
didlof7 didlof7  06.07.2020 01:10
В треугольнике против большей стороны лежит больший угол. Это угол А. Проведем перпендикуляр АН из этого угла на противоположную сторону ВС. Имеем два прямоугольных треугольника АВН и АСН, в которых перпендикуляр АН - общий катет. Пусть СН = Х. По Пифагору АН² = АС² - Х² и АН² = АВ² - (ВС-Х)². приравняем оба уравнения и получим: 100 - Х² = 289-441+42Х - Х², откуда 42Х=252, а Х = 6.
Тогда АН = √(АС² -Х²) = √(100-36) = 8.
В прямоугольном треугольнике АDH АD=15, АН=8. Тогда искомое расстояние DH (гипотенуза) по Пифагору равна  √(DА²+АН²) = √(225+64) = 17.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия