Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Найдём половину диагонали по теореме Пифагора (взяв за гипотенузу сторону, равную 10 см, а за катет - половину диагонали, равную 8 см): d = √(10² - 8²) = √(100 - 64) = √36 = 6 см. Тогда вся диагональ равна 2d = 12 см. ответ: 12 см.
Можно также воспользоваться тождеством параллелограмма (ромб - частный случай параллелограмма): 4a² = d₁² + d₂², где d₁, d₂ - диагонали ромба, a - сторона ромба d₂ = √(4a² - d₁²) = √(4·10² - 16²) = √(400 - 256) = √144 = 12 см. ответ: 12 см.
Найдём половину диагонали по теореме Пифагора (взяв за гипотенузу сторону, равную 10 см, а за катет - половину диагонали, равную 8 см):
d = √(10² - 8²) = √(100 - 64) = √36 = 6 см.
Тогда вся диагональ равна 2d = 12 см.
ответ: 12 см.
Можно также воспользоваться тождеством параллелограмма (ромб - частный случай параллелограмма):
4a² = d₁² + d₂², где d₁, d₂ - диагонали ромба, a - сторона ромба
d₂ = √(4a² - d₁²) = √(4·10² - 16²) = √(400 - 256) = √144 = 12 см.
ответ: 12 см.