Средняя линия трапеции делит её на две трапеции меньшего размера. докажите, что модуль разности между площадями этих трапеций равен четверти произведения высоты и разности оснований исходной трапеции
Пусть исходная трапеция - АВСД, Высота трапеции Н=2h, где h - высота каждой меньшей трапеции. ВС=а, АД=b МК - средняя линия исходной трапеции и равна (а+b):2 МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований: S1=h*(ВС+МК):2 S1=h*{а+(а+b):2}:2)=h*(3a+b):4 S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований: S2=h*(AD+МК):2 S2=h*{b+(b+a):2}:2=h*(a+3b):4 Разность между площадями этих трапеций S2-S1=h*(a+3b):4-h*(3a+b):4= =(ha+3hb-3ha-hb):4=2h(b-a):4 2h=H S2-S1=H(b-a):4
Высота трапеции Н=2h, где h - высота каждой меньшей трапеции.
ВС=а, АД=b
МК - средняя линия исходной трапеции и равна (а+b):2
МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК
S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований:
S1=h*(ВС+МК):2
S1=h*{а+(а+b):2}:2)=h*(3a+b):4
S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований:
S2=h*(AD+МК):2
S2=h*{b+(b+a):2}:2=h*(a+3b):4
Разность между площадями этих трапеций
S2-S1=h*(a+3b):4-h*(3a+b):4=
=(ha+3hb-3ha-hb):4=2h(b-a):4
2h=H
S2-S1=H(b-a):4