Средняя линия равнобедренной трапеции равна 30 верхнее оснтвание равно 17 боковая сторона 20. определить углы трапеции

arisha20summer arisha20summer    2   19.06.2019 16:30    3

Ответы
modamzubik modamzubik  15.07.2020 20:54
В равнобедренной трапеции: (d₁+d₂)/2=С, Где d₁ длина верхней линии, d₂ длина нижней, С длина средней линии. Отсюда:
(17+d₂)/2=30, откуда d₂ = 43
Назовем вершины трапеции буквами: A, B, C, D.
AB у нас будет боковой стороной, остальное и по логике легко распределить.
Так вот AD = 43. Нам нужно найти угол A.
cosA=(AD-BC)/(2AB)=26/40=13/20
cosB=cos(π-A)=-cosA=-13/20
∠С=∠B, ∠A=∠D. Косинусы углов определены.
Если интересует числовое значение в градусах, это можно высчитать самостоятельно по таблице, или в калькуляторе.
В школьных, иль контрольных заданиях достаточно определить синус, косинус или тангенс (в крайнем случае котангенс) угла.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия