Пусть дан треугольник АВС и медиана ВМ к стороне АС: АМ=CМ. Опустим также на сторону АС высоту ВН и распишем подробно площади треугольников АВМ и СВМ. S(ABM)=1/2*BH*AM S(CBM)=1/2*BH*CM Т.к. АМ=СМ, то видим, что S(ABM)=S(CBM). ответ: площади получаюшихся треугольников равны,
S(ABM)=1/2*BH*AM
S(CBM)=1/2*BH*CM
Т.к. АМ=СМ, то видим, что S(ABM)=S(CBM).
ответ: площади получаюшихся треугольников равны,