я решил лишь второй, третий и последний, см. прикреплённые два изображения ===>>
Решить неравенство Sin x>√3/2 , Sin x<√3/2 ,cos x>-√3/2 , cos x<1/2 , tgx<-√3/3
Объяснение:
1) Отмечаем на оси оу значение ( примерное) √3/2.
Затем выбираем значения выше , чем √3/2 (т.к Sin x>√3/2) .
Затем отмечаем часть дуги, соответствующее значениям выше чем √3/2.Ищем значения углов в точках пересечения
(π/3+2πn ; 2π/3+2πт)
3) Отмечаем на оси ох значение ( примерное) -√3/2.
Затем выбираем значения правее , чем -√3/2 (т.к cos x>-√3/2) .
Затем отмечаем часть дуги, соответствующее значениям правее чем -√3/2.Ищем значения углов в точках пересечения , используя симметричность косинусоиды
(-5π/6+2πn ; 5π/6+2πт)
5)tgx<-√3/3
(-π/2+πn ; π/3+πт)
я решил лишь второй, третий и последний, см. прикреплённые два изображения ===>>
Решить неравенство Sin x>√3/2 , Sin x<√3/2 ,cos x>-√3/2 , cos x<1/2 , tgx<-√3/3
Объяснение:
1) Отмечаем на оси оу значение ( примерное) √3/2.
Затем выбираем значения выше , чем √3/2 (т.к Sin x>√3/2) .
Затем отмечаем часть дуги, соответствующее значениям выше чем √3/2.Ищем значения углов в точках пересечения
(π/3+2πn ; 2π/3+2πт)
3) Отмечаем на оси ох значение ( примерное) -√3/2.
Затем выбираем значения правее , чем -√3/2 (т.к cos x>-√3/2) .
Затем отмечаем часть дуги, соответствующее значениям правее чем -√3/2.Ищем значения углов в точках пересечения , используя симметричность косинусоиды
(-5π/6+2πn ; 5π/6+2πт)
5)tgx<-√3/3
(-π/2+πn ; π/3+πт)