0,345
Объяснение:
Известно, что sin²(a) + cos²(a) = 1. Приведем нашу задачу к такому виду, чтобы использовать это.
Применим квадрат суммы для связи исходных данных с искомыми:
(sin(a) + cos(a))²=sin²(a) + 2·sin(a)·cos(a)+cos²(a) ⇒
т.к. sin(a)+cos(a)=1,3, то (sin(a) + cos(a))²=1,3²=1,69 и
sin²(a) + cos²(a) = 1 , то выражение преобразуется в такой вид
1,69 = 1 + 2·sin(a)·cos(a) ⇒
sin(a)·cos(a) = (1,69 - 1)÷2
sin(a)·cos(a) = 0,345
0,345
Объяснение:
Известно, что sin²(a) + cos²(a) = 1. Приведем нашу задачу к такому виду, чтобы использовать это.
Применим квадрат суммы для связи исходных данных с искомыми:
(sin(a) + cos(a))²=sin²(a) + 2·sin(a)·cos(a)+cos²(a) ⇒
т.к. sin(a)+cos(a)=1,3, то (sin(a) + cos(a))²=1,3²=1,69 и
sin²(a) + cos²(a) = 1 , то выражение преобразуется в такой вид
1,69 = 1 + 2·sin(a)·cos(a) ⇒
sin(a)·cos(a) = (1,69 - 1)÷2
sin(a)·cos(a) = 0,345