Следствие 2.0 из аксиомы параллельности прямых говорит о том, что "Если две прямые параллельны третьей прямой, то они параллельны". Действительно, пусть прямые a и b параллельны прямой с. Докажем, что a||b Доказательство: Допустим, что прямые a и b не параллельны, т.е. пересекаются в некоторый точке M. Тогда через точку М проходят две прямые (прямые а и b), параллельные прямой с. Но это противоречит аксиоме параллельных прямых. Поэтому наше предположение верно, а значит, прямые а и b параллельны.
Действительно, пусть прямые a и b параллельны прямой с. Докажем, что a||b
Доказательство:
Допустим, что прямые a и b не параллельны, т.е. пересекаются в некоторый точке M. Тогда через точку М проходят две прямые (прямые а и b), параллельные прямой с.
Но это противоречит аксиоме параллельных прямых. Поэтому наше предположение верно, а значит, прямые а и b параллельны.