С! в прямоугольном треугольнике abc угол c=90 градусов , ac=4 см, cb=2. окружность с центром на гипотенузе касается его катетов. найдите длину этой окружности.
Пусть точка касания окружности на АС будет М, на ВС - Н, а центр окружности - О. Тогда ОМ=ОН=МC= r ОМ ⊥АС, прямоугольные треугольники АМО и АВС имеют общий острый угол при вершине А. Они подобны АМ=4-r, ОМ=r АМ:АС=ОМ:ВС 4:(4-r)=2:r 4r=8-2 r 6r=8 см r=4/3 см Длина окружности=2π*r=8/3= 2 ²/₃ cм
Тогда ОМ=ОН=МC= r
ОМ ⊥АС, прямоугольные треугольники АМО и АВС имеют общий острый угол при вершине А. Они подобны
АМ=4-r, ОМ=r
АМ:АС=ОМ:ВС
4:(4-r)=2:r
4r=8-2 r
6r=8 см
r=4/3 см
Длина окружности=2π*r=8/3= 2 ²/₃ cм