С! двугранный угол при основании правильной треугольной пирамиды равен 60 градусам. найдите площадь полной поверхности пирамиды, если ее расстояние от середины высоты пирамиды до ее апофемы равно 3 см.

pawskayaliolya pawskayaliolya    1   25.09.2019 03:20    4

Ответы
nsotskova nsotskova  08.10.2020 17:16
На картинке прямоугольный треугольник, образованный апофемой как гипотенузой, высотой как вертикальным катетом и радиусом вписанной окружности основания как горизонтальным катетом
Половина высоты равна 3*2 = 6 см как гипотенуза малого треугольника с катетом против угла в 30 градусов, равным 3.
Значит, вся высота равна 12 см
По Пифагору
f² = r² + h²
(2r)² = r² + 12²
r² = 144/3 = 48
r = 4√3 см
f = 2r = 8√3 см
Основание
высота 
h₁ = 3r (т.к. медианы делятся точкой пересечения как 1 к 2)
По Пифагору для половинки основания
a² = (a/2)² + (3r)²
3/4*a² = 9r²
a² = 12r²
a = 2√3*r
S₁ = 1/2*a*r = 1/2*2√3*r*r = r²√3 = (4√3)²√3 = 48√3 см²
Площадь одной боковой стороны
S₂ = 1/2*a*f = 1/2*2√3*4√3*8√3 = 32*3√3 = 96√3 см²
И полная площадь
S = S₁ + 3S₂ = (48 + 96*3)√3 = 336√3 см²

С! двугранный угол при основании правильной треугольной пирамиды равен 60 градусам. найдите площадь
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия