С, 1. в трапеции абсд диагональ аб является биссектрисой угла д. биссектриса угла с пересекает большее основание ад в точке е. докажите ,что де=сд 2. параллелограмм абсд описан около окружности. высота бн пересекает диагональ ас в точке м, причем бм=10, мн=6. найти площадь параллелограмма.

nikitinaani19 nikitinaani19    2   25.09.2019 08:30    1

Ответы
676751 676751  08.10.2020 17:54
1)
∠ADB=∠CDB (DB - биссектриса)
∠ADB=∠CBD (накрест лежащие при AD||BC)
∠CDB=∠СBD, △BCD - равнобедренный, биссектриса CE является высотой, CE⊥BD
Биссектриса DB является высотой, △CDE - равнобедренный, CD=DE

2)
Описанный параллелограмм является ромбом.
Диагонали ромба являются биссектрисами углов, стороны равны.

MN - перпендикуляр на AB.
Точка M лежит на биссектрисе, равноудалена от сторон угла, MN=MH=6.
△BMN - египетский треугольник (3:4:5), множитель 2, BN=4*2=8
△ABH~△MBN (прямоугольные, ∠B - общий), k=BH/BN=16/8=2
AB=BM*k= 10*2=20
S=AB*BH=20*16=320

ИЛИ

По теореме о биссектрисе
AB/BM=AH/MH <=>
AB/10=AH/6 <=> 
AH=3/5 *AB

AB^2= AH^2 +BH^2 <=>
AB^2= 9/25 *AB^2 +16^2 <=>
16/25 *AB^2 =16^2 <=>
AB =√(25*16) =20

S= AB*BH =20*16 =320

-----------------------------------------------------------------------------------------------------------------
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны. В параллелограмме противоположные стороны равны. Следовательно в описанном параллелограмме все стороны равны, он является ромбом. (a=c, b=d, a+c=b+d <=> 2a=2b <=> a=b)

С, 1. в трапеции абсд диагональ аб является биссектрисой угла д. биссектриса угла с пересекает больш
С, 1. в трапеции абсд диагональ аб является биссектрисой угла д. биссектриса угла с пересекает больш
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия