Решите с рисунком, ! дан треугольник авс со сторонами ab= c, bc = a, ac= b. провели биссектрисы внешних углов при вершинах а и с и из вершины в на них опустили перпендикуляры вм и bn. найти длину отрезка mn.
В △BAD AM является биссектрисой и высотой, следовательно и медианой, M - середина BD. ME - средняя линия в △BAD, ME||AC. Аналогично NF||AC. Через точку вне данной прямой можно провести только одну прямую, параллельную данной, E и F принадлежат MN.
MN=ME+EF+NF
Медиана из прямого угла равна половине гипотенузы, ME=AB/2, NF=BC/2.
EF - средняя линия в △ABC, EF||AC, EF=AC/2
D - пересечение BM и AC.
В △BAD AM является биссектрисой и высотой, следовательно и медианой, M - середина BD. ME - средняя линия в △BAD, ME||AC. Аналогично NF||AC. Через точку вне данной прямой можно провести только одну прямую, параллельную данной, E и F принадлежат MN.
MN=ME+EF+NF
Медиана из прямого угла равна половине гипотенузы, ME=AB/2, NF=BC/2.
MN равен полупериметру △ABC, MN=(a+b+c)/2