Решите, , две . первая: стороны треугольника равны 29, 25 и 6 см. найдите высоту, к меньшей стороне. вторая: в треугольнике даны стороны а = √3, b = 2√3. угол ∠а, противолежащий стороне а, равен 30°. найти третью сторону. огромное заранее.

DeNcHiK123st DeNcHiK123st    1   06.09.2019 01:40    10

Ответы
вик232 вик232  06.10.2020 20:23
1) По формуле Герона находим площадь треугольника.
Полупериметр р = (29+25+6)/2 = 60/2 = 30 см.
S = √(30*1*5*24) = √3600 = 60 см².
Высота на сторону в 6 см равна 2S/6 = 2*60/6 = 120/6 = 20 см.

2) Используем теорему синусов.
Синус угла В в 2 раза больше синуса угла А: 
sin B = 2*sin A = 2*(1/2) = 1.
Значит, угол В - прямой.
Тогда с = b*cos A = 2√3*cos 30° = 2√3*(√3/2) = 3.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия