Решите ! 90б прямая касается двух окружностей с центрами о и р в точках а и в соответственно. через точку с, в которой эти окружности касаются друг друга, проведена их общая касательная, пересекающая прямую ав в точке м. найдите рм, если ав=8 и угол сом=

juehxbrf juehxbrf    2   30.06.2019 01:10    5

Ответы
DimaGostovsky DimaGostovsky  23.07.2020 19:23
1. MC=BM и МА = МС (св-ство касательных,проведенных из 1 точки.)
=> МС = АВ/2.
2. МО - биссектриса СМА (угол). РМ - биссектриса ВМС (угол)
Сумма этих углов = 180°. Получается что сумма углов CMO и РМС равна 90 градусов. То есть треугольник РМО - прямоугольный.
3. МС - высота (к гипотенузе) и угол РМС = угол СОМ = а.

Дальше cos.
РМ = МС/cos(а) = AB/(2*cos(a))
Всё так :)
ПОКАЗАТЬ ОТВЕТЫ
ValeriaIv ValeriaIv  23.07.2020 19:23
Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными.
ВМ = МС и МА = МС ⇒МС = АВ/2
РМ - биссектриса < ВМС
МО - биссектриса < СМА
< ВМС +< СМА=180⇒< РМС +< СМО = 90 ⇒ΔРМО - прямоугольный
МС - высота к гипотенузе AB
< РМС = < СОМ = а
 РМ = МС/cos(а) = AB/2cosα 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия