Треугольники ВОС и MOD подобны по двум углам (∠ВОС = ∠МОD как вертикальные, а ∠ВСО = ∠OMD как внутренние накрест лежащие при параллельных прямых AD и ВС и секущей СМ). Коэффициент подобия равен отношению соответственных сторон: k = MD/BC = 1/2 (так как ВС = АD, а MD = AD/2). В подобных треугольниках отношение высот равно коэффициенту подобия. Проведем через точку О прямую РН, перпендикулярную сторонам ВС и AD параллелограмма. Тогда НО - высота треугольника MOD, ОР - высота треугольника ВОС, а РН - высота параллелограмма АВСD. OH = PO/2 = PH/3.
Sabom = 25 cм².
Объяснение:
Треугольники ВОС и MOD подобны по двум углам (∠ВОС = ∠МОD как вертикальные, а ∠ВСО = ∠OMD как внутренние накрест лежащие при параллельных прямых AD и ВС и секущей СМ). Коэффициент подобия равен отношению соответственных сторон: k = MD/BC = 1/2 (так как ВС = АD, а MD = AD/2). В подобных треугольниках отношение высот равно коэффициенту подобия. Проведем через точку О прямую РН, перпендикулярную сторонам ВС и AD параллелограмма. Тогда НО - высота треугольника MOD, ОР - высота треугольника ВОС, а РН - высота параллелограмма АВСD. OH = PO/2 = PH/3.
Тогда Sabcd =PH·AD = 60 см² (дано).
Sabd = (1/2)·PH·AD = 30 cм².
Smod = (1/2)·OH·MD = (1/2)·PH/3·AD/2 = (1/12)·PH·AD = 60/12 = 5 cм².
Sabom = Sabd - Smod = 30 - 5 = 25 см².