Решить по . правильная пирамида. с чертежом желательно. в правильной треугольной пирамиде sabc сторона основания равна a, боковое ребро равно а. через среднюю линию основания abc, параллельную bc, и середину бокового ребра sa проведена плоскость. найти площадь сечения.
если её основание - правильный n-угольник, а все боковые рёбра равны.
Т.е. боковые грани - равнобедренные треугольники. По условию стороны основания и боковые ребра равны а, следовательно, боковые грани - не просто равнобедренные, но и правильные треугольники.
Средняя линия треугольника равна половине стороны, которой она параллельна.
Сечение - треугольник. Его боковые стороны также средние линии боковых граней. Следовательно, это сечение - равносторонний треугольник Сечение и грани пирамиды - подобные треугольники с коэффициентом подобия 1/2.
Площадь правильного треугольника находят по формуле
S=(а²√3):4.
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
Площадь сечения пирамиды относится к площади грани как k²=(1/2)²=1/4
Sсеч. =S АВС:4
Sсеч. =(а²√3):16