Решить по . 1-даны точки а (3; -5) и в (-2; 3). запиши координаты вектора ав. 2-даны точки а (-2; 4) и в (-5; -8). запиши абсциссу вектора ав 3-даны точки а (-5; -7) и в (2; 3). запиши ординату вектора ав 4-найди длину вектора мк {8; -6} 5-найди длину вектора мк, если м (6; 2) и к (-6; -3) 6-запиши координаты точки м, если она является серединой отрезка вс, где в (0; -4) и с (8; 0) 7-найди абсциссу точки к, середины отрезка ве, если в (5; 2) и е (-3; 0). 8-даны точки а (-3; 3) и в (2; 3). найди длину отрезка ав. 9-на прямой отмечены точки а, в и с. какая точка находится между двумя другими, если а (2; -3), в (0; -5) и с (4; -1) 10-найди расстояние от точки а (3; -4) до начала координат.

Натальяроссия Натальяроссия    2   13.08.2019 13:30    0

Ответы
nkds00005 nkds00005  02.08.2020 15:02
1) AB = (-2-3,3-(-5)) = (-5,8)
x = -5, y=8

2) AB = (-5-(-2),-8-4) = (-3,-12)
x = -3

3) AB = (2-(-5),3-(-7)) = (7,10)
y = 10

4) |MK| = sqrt(8^2+(-6)^2) = sqrt(64+36) = sqrt(100) = 10

5) MK = (-6-6,-3-2) = (-12,-5)
|MK| = sqrt((-12)^2 + (-5)^2) = sqrt(144+25) = sqrr(169) = 13

6) Xm = (0+8)/2 = 4
Ym = (-4+0)/2 = -2

7) Xk = (5-3)/2 = 1

8) AB = (2-(-3),3-3) = (5,0)
|AB| = sqrt(5^2+0^2) = sqrt(25) = 5

9) AB = (0-2,-5-(-3)) = (-2,-2)
|AB| = sqrt((-2)^2 + (-2)^2) = sqrt(8) = 2sqrt(2)
BC = (4-0,-1-(-5)) = (4,4)
|BC| = sqrt(4^2+4^2) = sqrt(32) = 4sqrt(2)
AC= (4-2,-1-(-3)) = (2,2)
|AC| = sqrt(2^2+2^2) = sqrt(8) = 2sqrt(2)
|BC| = |AB| + |AC|, значит,
А - лежит между B и C.

10) AO = (0-3,0-(-4)) = (-3,4)
|AO| = sqrt((-3)^2 + 4^2) = sqrt(25) = 5
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия