Решить основанием тетраэдра мавс служит треугольник авс , в котором ав=вс, а ас= 2а точка о принадлежит ас мо перпендикулярно ам и оа=ос. расстояние от т.о до мв = а вычислите угол между плоскостями амв и смв

998l 998l    1   18.08.2019 23:40    15

Ответы
nastyaxa12oziu9w nastyaxa12oziu9w  05.10.2020 03:41

Условие задачи неполное. Должно быть так:

Основанием тетраэдра МАBC служит треугольник АBC в котором AB = BC и АС = 2а√3. Точка О принадлежит АС отрезок МО перпендикулярен АС и ОА = ОС. Расстояние от точки О до прямой МB равно а. Найти угол между плоскостями (AMB) и (CMB).

Проведем ОК⊥МВ. Тогда ОК - расстояние от точки О до прямой МК и ОК = а.

ΔАВС равнобедренный, значит медиана ВО (ОА = ОС по условию) является и высотой,

ВО⊥АС,

МО⊥АС по условию, значит

АС⊥(МОВ).

МВ лежит в плоскости (МОВ), значит МВ⊥АС и ОК⊥МВ по построению, тогда МВ⊥(АКС) и значит ∠АКС - линейный угол двугранного угла между плоскостями (АМВ) и (СМВ).

АО = ОС = АС/2 = а√3, МО - медиана и высота в треугольнике МАС, значит он равнобедренный,

МА = МС.

ΔМАК = ΔМСК по гипотенузе и катету (∠АКМ = ∠СКМ = 90°, МА = МС и МК - общий катет), тогда

АК = КС, значит медиана ОК в равнобедренном треугольнике АКС является и высотой и биссектрисой, т.е. ОК⊥АС и ∠АКС = 2∠ОКС.

ΔОКС: ∠КОС = 90°,

           tg∠OKC = OC / OK = a√3 / a = √3

Тогда ∠ОКС = 60°.

∠АКС = 2∠ОКС = 120°

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия