Решить любую из двух : 1) в трапеции cdef основание de=6, ef=2,fc=8, угол def=120 градусов. найдите угол dcf. 2) в трапеции mnpq mq||np, точка пересечения диагоналей удалена от двух вершин трапеции на 3 метра, а от двух других - на 5 метров,
угол pmq=60 градусов. найдите среднюю линию трапеции.

Мариам2065 Мариам2065    2   08.03.2019 05:00    2

Ответы
123321456654sego 123321456654sego  24.05.2020 04:57

1.Пусть ЕР перпендикулярно CF. FP = EF*cos(180-120) = (1/2)*EF = 1. 

Если мы теперь опустим перпендикуляр из точки D на СF (пусть это будет DN), то он отсечет отрезок DN = CF - DE - PF = 8 - 6 -1 = 1. Поэтому трапеция равнобедренная,углы при основаниях равны, искомый угол 60 градусов.

 2. О - точка пересечения диагоналей. Считаем, что 3 - это рассточние от О до вершин меньшего основания, а 5 - до вершин большего, и обе диагонали равны 8. (Если это не так, и диагонали равны 6 и 10, то это будет параллелограм, тоже вобщем трапеция... Но в этом случае задачу решить нельзя! попробуте доказать :

Среднюю линюю легко найти, если продить MQ и провести линию II NQ через P до пересечения с МQ (ну, с продолжением), пусть точка пересечения Т.

Ясно, что РТ = NQ, QT = NP, то есть в треугольнике PTM такая же средняя линяя как и в трапеции. Но этот треугольник равноберенный, да еще и с углом 60 градусов при основании, то есть равносторонний. Поэтому MQ = PM = PT = 5 + 3 = 8, а средняя линяя равна 4.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия