Решение по ! ! 4. две окружности с радиусами 4 см и 6 см касаются снаружи. их общая касательная, которая не проходит через точку соприкосновения кругов, пересекает линию центров в точке а. найдите расстояния от точки а в центры кругов.

кристина2626 кристина2626    2   15.09.2019 10:00    1

Ответы
tim14stefan24 tim14stefan24  15.09.2019 10:00

асательная прямая  t  к окружности  c  пересекает  окружность в единственной точке  t. для сравнения,  секущие прямые  пересекают окружность в двух точках, в то время как некоторые прямые могут не пересекать окружность совсем. это свойство касательной прямой сохраняется при многих   преобразованиях[en], таких как  подобие,  вращение,  параллельный перенос,  инверсия  и  картографическая проекция. говоря техническим языком, эти преобразования не меняют  структуру инцидентности  касательных прямых и окружностей, даже если сами прямые и окружности деформируются.

радиус окружности, проведённый через точку касания, перпендикулярен касательной прямой. и обратно, перпендикуляр к радиусу в конечной точке (на окружности) является касательной прямой. окружность вместе с касательной прямой имеют  осевую симметрию  относительно радиуса (к точке касания).

по  теореме о степени точкипроизведение длин pm•pn для любого луча pmn равно квадрату pt, длине отрезка от точки p до точки касания (отрезок показан красным цветом).

никакая касательная прямая не может проходить через точку внутри окружности, поскольку любая такая прямая должна быть секущей. в то же время для любой точки, лежащей вне круга, можно построить две проходящие через неё касательные прямые. фигура, состоящая из окружности и двух касательных прямых, также обладает осевой симметрией относительно прямой, соединяющей точку  p  с центром окружности  o  (см. рисунок справа). в этом случае отрезки от точки  p  до двух точек касания имеют одинаковую длину. по  теореме о степени точки  квадрат длины отрезка до точки касания равен степени точки p относительно окружности  c. эта степень равна произведению расстояний от точки  p  до двух точек пересечения окружности любой секущей линией, проходящей через  p.

угол θ между хордой и касательной равен половине дуги, заключённой между концами хорды.

касательная прямая  t  и точка касания  t  свойством сопряжённости друг другу; это соответствие можно обобщить в идею о  полюсе и поляре. такая же взаимосвязь существует между точкой  p  вне окружности и секущей линией, соединяющей две точки касания.

если точка p лежит вне окружности с центром o, и если касательные прямые из p касаются окружности в точках t и s, то углы ∠tps и ∠tos в сумме 180°.

если  хорда  tm проведена из точки касания t прямой p t и ∠ptm ≤ 90°, то ∠ptm = (1/2)∠mot.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия