Ребро куба abcda1b1c1d1 равно корень из 3 найдите расстояние от вершины c до плоскости bdc1

Gutlock Gutlock    2   09.06.2019 17:10    36

Ответы
Cxvdjx830u5b Cxvdjx830u5b  08.07.2020 11:58
На самом деле тут нужна теория. 
1). Фигура AB1D1A1 - правильная треугольная пирамида с основанием AB1D1. Вершина A1 проектируется на основание в центр O правильного треугольника AB1D1.
С другой стороны, фигура AB1D1C - тоже правильная пирамида с основанием AB1D1 (на самом деле это вообще правильный тетраэдр, у которого все грани и ребра одинаковые). Поэтому вершина C проектируется на основание в центр O правильного треугольника AB1D1.
Это означает, что точки A1 и C лежат на прямой, перпендикулярной плоскости AB1D1, и проходящей через точку O. 
Другими словами, ДОКАЗАНО, что плоскость AB1D1 перпендикулярна большой диагонали куба A1C.
Совершенно так же доказывается, что A1C перпендикулярна плоскости BDC1.
Само собой, плоскости AB1D1 и BDC1 параллельны.
2) Теперь надо обозначить O1 - центр треугольника BDC1 (через эту точку проходит диагональ A1C). M - середина BD и AC, M1 - середина B1D1 и A1C1.
Тогда из параллельности плоскостей AB1D1 и BDC1 
AO/OO1 = A1M1/M1C1 = 1; 
CO1/OO1 = CM/MA = 1; 
То есть все три отрезка A1O = OO1 = CO1.
Ясно, что СO1 - искомое расстояние от C до плоскости BDC1 (я напоминаю - A1C перпендикулярна обеим плоскостям).
Вот, теория закончилась. Дальше решение :)
A1C = 3, => СO1 = 1;
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия