Ребро куба abcda1b1c1d1 равно 1. прямые bc1 и cb1 пересекаются в точке k. найдите угол между прямой ak и плоскостью a1ad и длину отрезка ak.

nikitakurganov nikitakurganov    1   09.09.2019 08:20    25

Ответы
Proyd1 Proyd1  16.08.2020 12:34
Точка К - середина грани ВВ1С1С.
Спроецируем точку К на основание  - точка К1 (середина ВС).
АК1 = √(1² + (1/2)²) = √5/2.
Теперь находим АК:
АК = √((АК1)² + (1/2)²) = √((5/4) + (1/4)) = √6/2.

Для нахождения угла между прямой AK и плоскостью A1AD спроецируем отрезок АК на грань А1АД и проведём сечение по линии АК перпендикулярно грани АА1Д1Д.
Получим прямоугольный треугольник с одним катетом, равным 1 (высота куба) и вторым - равным половине диагонали грани.
Искомый угол α равен:
α = arc tg (1/(√2/2)) = arc tg √2 =  0,9553166 радиан = 54,73561°.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия