РАЗОБРАТЬСЯ Продолжение биссектрисы угла B треугольника ABC пересекает описанную окружность в точке M; O — центр вписанной окружности, Ob — центр вневписанной окружности, касающейся стороны AC. Докажите, что точки A, C, O и Ob лежат на окружности с центром M.​

annakalinina224 annakalinina224    2   05.07.2020 13:32    11

Ответы
лёха1920 лёха1920  15.10.2020 15:13

Центр вписанной окружности (O) - пересечение биссектрис внутренних углов.

Центр вневписанной окружности (Ob) - пересечение биссектрис внешних углов.  

Поскольку центр Ob лежит на биссектрисах внешних углов A и С, он равноудален от прямых AB, AC, BC, следовательно лежит на биссектрисе угла B.  

Биссектрисы внешнего и внутреннего углов перпендикулярны (сумма смежных углов 180, сумма их половин 90).  

В четырехугольнике AOCOb противоположные углы прямые (сумма 180), следовательно он вписанный, OOb - диаметр.  

Пусть M - середина OOb, центр описанной окружности AOCOb.

AMC =∪AO+∪CO =2ACO +2CAO =A+C

В четырехугольнике ABCM внешний угол равен внутреннему при противолежащей вершине, следовательно четырехугольник вписанный.

То есть M лежит на описанной окружности ABC.


РАЗОБРАТЬСЯ Продолжение биссектрисы угла B треугольника ABC пересекает описанную окружность в точке
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия