В треугольнике АВС: BC=AB=BM+MA=k*MA+MA=MA(k+1) (дано). В треугольнике МВС имеем: MB/BC=MO/OC (так как ВО - биссектриса <ABC). Или k*MA/MA(k+1)=MO/OC, или MO/OC=k/k+1. Отсюда MO=k*R/(k+1), так как ОС=R. DM=R-MO=R-k*R/(k+1)=[R(k+1)-kR]/(k+1)=R(k+1-k)/(k+1)=R/(k+1). MC=R+MO=R+k*R/(k+1)=[R(k+1)+kR]/(k+1)=R(k+1+k)/(k+1)=R(2k+1)/(k+1). Тогда DM/MC=(R/(k+1))/(R(2k+1)/(k+1))=1/2k+1. ответ: DM:MC=1/(2k+1).
BC=AB=BM+MA=k*MA+MA=MA(k+1) (дано).
В треугольнике МВС имеем: MB/BC=MO/OC (так как ВО - биссектриса <ABC).
Или k*MA/MA(k+1)=MO/OC, или MO/OC=k/k+1. Отсюда MO=k*R/(k+1), так как ОС=R.
DM=R-MO=R-k*R/(k+1)=[R(k+1)-kR]/(k+1)=R(k+1-k)/(k+1)=R/(k+1).
MC=R+MO=R+k*R/(k+1)=[R(k+1)+kR]/(k+1)=R(k+1+k)/(k+1)=R(2k+1)/(k+1).
Тогда DM/MC=(R/(k+1))/(R(2k+1)/(k+1))=1/2k+1.
ответ: DM:MC=1/(2k+1).