Радиусы оснований шарового пояса 3м и 4м , а радиус шара 5м. определите объём шарового пояса, если параллельные плоскости , пересекающие шар расположены по разные стороны от центра шара.

рус248 рус248    1   08.03.2019 15:40    5

Ответы
9Тимур1111111121 9Тимур1111111121  24.05.2020 07:06

 

копирую

Радиус сечения шара и расстояние от центра шара до плоскости сечения связаня с радиусом шара теоремой Пифагора

r^2 + d^2 = R^2; В данном случае, поскольку тройка 3,4,5 - пифагрова, расстояния до сечений равны d1 = 4; - до сечения радиуса r1 = 3; соответственно, высота шарового сегмета, ОТРЕЗАННОГО от шара, равна H1 = R - d1 = 5 - 4 = 1; и d2 = 3; для r2 = 4; соответственно Н2 = R - d2 = 5 - 3 = 2;

Поскольку сечения находятся по разные стороны от центра, для получения объема пояса надо из объема шара вычесть объемы шаровых сегментов высоты H1 и H2.

(Если бы они были по одну сторону - надо было бы из объема большего сегмента вычесть меньший.)

Итак, объем шара

V0 = (4*pi/3)*5^3 = 500*pi/3;

Объем первого сегмента высоты Н1 = 1

V1 = pi*1^2*(5 - 1/3) = 14*pi/3;

b второго высоты Н2

V2 = pi*2^2*(5 - 2/3) = 52*pi/3;

Объем пояса

V3 = (pi/3)*(500 - 14 - 52) = 434*pi/3

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия