Пусть аа1 и сс1 - медианы треугольника авс, аа1 = 9 см, сс1 = 12 см. медианы пересекаются в точке о, и угол аос = 150°. найдите площадь треугольника авс

Gaga1111111 Gaga1111111    3   13.07.2019 06:00    18

Ответы
MaryGaloyan MaryGaloyan  03.10.2020 02:45
В точке пересечения медианы делятся в отношении 2/1 начиная от вершины, медиана делит треугольник на 2 равновеликих треугольника. АА1=9, АО=2/3АА1=9*2/3=6, А1О=1/3АА1=3, СС1=12, СО=2/3*12=8, С1О=1/3*12=4, площадь треугольникаАОС=1/2*АО*СО*sin150=1/2*6*8*1/2=12, площадь треугольника А1ОС= 1/2*СО*А1О*sinA1OC, уголА1ОС=180-уголАОС=180-150=30, площадьА1ОС=1/2*8*3*1/2=6, площадьАА1С=12+6=18=1/2АВС, площадь АВС=площадьАА1С*2=18*2=36
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия