Прямые ав, вс- касательные к окружности,центром которой является точкао,точкиа и с точки касания.окружность пересекает отрезок ов в точке т.угол авт=30гр.докажите,что точка т является точкой перессечения биссектрис треугольника авс

tanya732 tanya732    1   12.07.2019 20:00    1

Ответы
Adelka715 Adelka715  15.09.2020 13:52
Чертим параллелограмм с острым углом, слева внизу,а с большими сторонами горизонтально.Обозначаем вершины начиная с нижней левой и по часовой A,B,C,D. Обозначим AB=CD=4X,BC=AD=9X.Пусть дана биссектриса угла А. Она пересекает сторону BC в точке E. Проводим EF параллельно AB. ABCD- ромб, AE -диагональ. Тогда AB=BE=EF=AF=CD=4X,
EC=FD=9X-4X=5X.
Пусть AE=Y.Периметр треуольника AB+BE+AE=4X+4X+Y.Периметр оставшейся части AE+EC+CD+AD=Y+5X+4X+9X.
Разность периметров
 (Y+18X)-(Y+8X)=10X
10X=10
X=1
Периметр параллелограмма
2*(4x+9x)=26x=26
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия