Прямоугольные треугольники abc и abd расположены по одну сторону от их общей гипотенузы ав. отрезки ав и сd пересекаются в точке р. докажите, что треугольники аср и вdр подобны. сложно
Прямоугольные треугольники имеют общую гипотенузу, значит оба вписаны в одну окружность с диаметром АВ.
Для этой окружности РВ и РД - секущие. По теореме о секущих РА·РВ=РС·РД, отсюда РА/РС=РД/РВ. С таким отношением сторон и общим углом Р треугольники АСР и ВДР подобны. Доказано.
Для этой окружности РВ и РД - секущие.
По теореме о секущих РА·РВ=РС·РД, отсюда РА/РС=РД/РВ.
С таким отношением сторон и общим углом Р треугольники АСР и ВДР подобны.
Доказано.