Прямоугольная трапеция с основаниями 10 и 16 и высотой 8 вращают около меньшего основания, найти площадь поверхности тела вращения

Катерина26121 Катерина26121    3   03.09.2019 09:50    1

Ответы
solodkin1978 solodkin1978  06.10.2020 14:26

Тело вращения - цилиндр с радиусом основания, равным меньшей боковой стороне трапеции,  с углублением  в виде конуса того же  радиуса. 

Его площадь состоит из:

а) площади боковой поверхности конуса.  

б) площади боковой поверхности цилиндра; 

в) площади одного основания цилиндра.

Обозначим трапецию АВСD

а) S(бок.кон)=πrL

L–  сторона CD трапеции. Высота трапеции СН "отсекает" от нее треугольник с катетами СН=АВ=8 и HD=AD-AH=16-10=6. 

По т.Пифагора СD=10.

S(бок. конуса)=π•8•10=80π

б) S (бок. цил)=2π•r•h=2π•8•16=256π

в) S (осн)=πr²=π•8²=64π

S(полн)=π•(80+256+64)=400 π (ед. площади)

ПОКАЗАТЬ ОТВЕТЫ
hopik2 hopik2  06.10.2020 14:26
Найдем площадь круга с радиусом R1=8. S1=πR²=64π.
вычислим боковую поверхность цилиндра с риусом 8 и высотой 16.
S2=2πRh=2·8·16π=256π.
Вычислим боковую поверхность конуса с радиусом 8 и высотой СК=6
ΔСКD.СD²=СК²+DК²=36+64=100; СD=√100=10.
S3=πRL=8·10π=80π.
Площадь полной поверхности образованного тела равно
S=S1+S1+S3=64π+256π+80π=400π кв. ед.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия