Прямая параллельная ось основания мр и nk трапеции микр проходит через точку пересечения диагоналей трапеции и пересекает ещё боковые стороны мn и кр в точках а и в. найдите длину ав если мр=24 nk=16

enbasmanovan enbasmanovan    1   28.05.2019 15:20    0

Ответы
sking09 sking09  26.06.2020 08:27
Я обозначаю MP = a = 24 и NK = b = 16
Пусть продолжения MN и KP пересекаются в точке Е.
Высота MPE пусть равна H (это просто обозначение).
Тогда высота NKE равна H*b/a, а высота трапеции h = H*(1 - b/a);
Прямая AB делит высоту трапеции в той же пропорции, что и диагонали (и вообще любой прямой отрезок с концами на основаниях), то есть в отношении b/a; то есть на отрезки h*b/(a + b) и h*a/(a + b) (первый отрезок между NK и AB, второй - между MP и AB, в сумме они дают h, и относятся, как b/a)
Отсюда высота треугольника ABE равна H - h*a/(a + b) = H*(1 - (a - b)/(a + b))
То есть отношение высот подобных треугольников ABE и MPE равно
1 - (a - b)/(a + b) = 4/5; (если подставить a = 24; b = 16)
поэтому AB = MP*4/5 =  96/5 = 19,2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия