Проверить! основание пирамиды треугольник стороны которого 1 и 2 а угол между ними равно 60° ,боковые ребра равны √13 .найти обьем пирамиды

asylbekova1898 asylbekova1898    1   31.07.2019 16:10    0

Ответы
squarenq squarenq  28.09.2020 18:27
Треугольная пирамида, все боковые ребра равны, => высота пирамиды проектируется в центр описанной около треугольника (основания пирамиды) окружности.
радиус описанной около произвольного  треугольника окружности вычисляется по формуле:
R= \frac{AB}{2sin\ \textless \ C} = \frac{BC}{2sin\ \textless \ A}= \frac{AC}{2sin\ \textless \ B}
AC=1, BC=2, <C=60°. AB=?
по теореме косинусов:
AB²=AC²+BC²-2*AC*Bc*cos<C
AB²=1²+2²-2*1*2*cos60°
AB²=3,  AB=√3

прямоугольный треугольник:
гипотенуза с=√13 - боковое ребро пирамиды
катет а=√3 радиус описанной около треугольника окружности
катет Н -высота пирамиды, найти по теореме Пифагора:
c²=a²+H², H²=(√13)²-(√3)². H=√10
V= \frac{1}{3} * S_{osn} *H&#10;&#10; S_{osn} = \frac{1*2}{2} *sin60 ^{0} = \frac{ \sqrt{3} }{2}
V= \frac{1}{3} * \frac{ \sqrt{3} }{2}* \sqrt{10} = \frac{ \sqrt{30} }{6}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия