, приэтомдугаpq+дугаmn=180градусов. он, на хорду pq опущен перпендикуляр ан1. докажите, что pq=2oh

lilyagoz89 lilyagoz89    1   08.03.2019 19:00    2

Ответы
MrDeff MrDeff  06.06.2020 22:47

Поскольку расстояния до хорд одинаковой длины в окружности равны (вообще, d^ + (h/2)^ = R^2; где d - расстояние до хорды, h - ее длина), то БЕЗ ПОТЕРИ ОБЩНОСТИ можно свести концы дуг(хорд), то есть считать, что точки N и Р совпадают, а треугольник MP(N)Q - прямоугольный. В самом деле, равной дуге соответствует равная хорда, => и расстояние до неё такое же.

В треугольнике MPQ ОН средняя линяя (раз треугольник прямоугольный - ОН II PQ, и О - середина MQ), поэтому ОН = PQ/2;

 

Можно всё это рассказывать и "с конца" :)) от точки P отложим дугу (а значит, и хорду), равную MN, конец обозначим за M1. Далее по тексту, доказывается, что ОН1 (перпендикуляр на РМ1) равен PQ/2; но ОН1 = ОН (в начале есть формула связи длины хорды и расстояния до нее:)), чтд. 

 

Оба решения совершенно одинаковы, но отличаются противоположным порядком изложения :)))

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия